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ABSTRACT

The stress-strain behavior of Berea, Ohio, and Pecos
sandstone was measured intensively under triaxial loading
paths. Both compression and extension tests were performed
at different pore fluid pressures. These tests showed that
four modes can arise in the stress-strain curves up to failure:
an initial nonlinear portion; linear portion; a final nonlinear
portion; and volume change of the rock maxtrix due to pore
fluid pressure. The characteristics of these modes were
studied,and a nonlinear model was developed to represent the
important characteristics, i.e., the four modes, of the
behavior of sandstones by means of a constitutive equation in
such a way as to satisfy certain mathematical requirements.

A finite element model using nonlinear stress-strain
relationship was developed which simulates the stress state of
a structure up to failure. The finite element model was used
to predict fracture pressure around a borehole during drilling.
The shape of the borehole is either circular or elliptic, and
the tactonic stress is directional. Since the nonlinear stress
2 depends upon loading history, the loads were applied

mentally, simulating phenomena occuring during the
1§ process. It is shown that use of conventional linear
siress-strain behavior gives significantly erroneous results for
well stability problems.

INTRODUCTION

The finite element method has now become recognized
as a general method of wide applicability to engineering and
physical science problems. As a result of its broad
applicability and systemactic generality, the method has
gained wide acceptance by civil engineers and architectural
engineers for designing rock structures and soil foundations.

Experimental studies7 on rock and soil behavior have
been conducted since the early 20th century. Numerous data
of the effect of temperature, pore pressure, stress state and
time upon rock and soil behavior have been published. In the

1960's, various simple nonlinear constitutive equations 8,9

were proposed. Although these were helpful for analytical
use, the development of sophisticated numerical discretiza-

tion techniques need not require simplified constitutive
equations.

kelerences and HIUSTFETIONS af end o0l paper.

Most nonlinear equations were developed in the past to fit
nonlinear stress-strains for metals and soils. Consequently,
one often encounters trouble applying them to porous
materials consisting of grains. Rock exhibits volumetric
expansion and compression and also increased rigidity as
hydrostatic pressure increases. For instance, the nonlinearity
of sandstones is significant in radial strain rather than axial
strain for triaxial compression tests. This is due to
volumetric expansion caused by the sliding between grains
before failure of rock occurs. Since the rigidity increases
with hydrostatic pressure, the usual deviatoric stress-strain
relations can not be applied to sandstones. Various nonlinear
constitutive stress-strain relationships were tested by the pre]
sent authors before this work was initiated. These include equg
tions proposed by Barla, Drucker, 16 Von Misesg, Prandtle9,

Mroz12 and Dienes*, But none of them could simultaneously
take into account nonlinear volumetric change and increased
rigidity due to hydrostatic pressure for both compression and
extensi?gx. Although l}he nonlinear equations proposed by
Sandler’” and Prevost™ partially satisfy these requirements,
they do not represent accurately both axial and radial stress-
strain of sandstones with pore pressure under triaxial exten-
sion and compression loading. In this work, the nonlinear
constitutive equation was assumed to be composed of four
parts: an initial nonlinear part, sn elastic part, a plastic
part, and volume change of the rock matrix due to fluid
pressure. Each part was carefully examined and expressed by
mathematically consistent equations. Thus, a nonlinear
constitutive equation was established which closely simulates
the nonlinear behavior of sandstones with pore pressure and
was applied to a finite element simulator.

Estimation of fracture gradient is important for the
drilling operation since it limits the maximum density of the
drilling fluid. It also gives the maximum borehole strength at
the casing shoe during kick control operations. Estimation of
the fracture gradient is erroneous if one simply applies the
linear stress-strain behavior. The stress state changes on a
wide range before borehole rupture, including significant
nonlineality in stress-strain relations for the rock. In this
work, the fracture gradient around a wellbore was studied, as
an example of the practical application of the finite element
model using nonlinear stress-strain. The minimum fracture
gradient usually occurs when the surface of the wellbore
cracked or notched. In this case the fracture gradient is
close to the tectonic stress gradient. On the other hand,
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when the wellbore surface is smooth, higher gradients can b
observed. This higher pressure was calculated for a wellborg
with mud cake to study the effect of the directional tectonig
stress and an elliptic welibore.

STRESS-STRAIN BEHAVIOR OF SANDSTONES

Experimental Procedures

Three sandstones(Berea, Ohio, and Pecos) were used in
this study. Indiana limestone was used only for measuring the
effective stress constant under static conditions. These rocks
were selected because they are frequently used as test
materials for rock mechanics research conducted in North
America and because their permeability are widely different
(180 to 400 md for Berea sandstone, 6 md for Ohio sandstone
and 0.2 md for Pecos sandstone), Porosities were around 20.7
percent for Berea sandstone, 19.5 percent for Ohio sandstong
and 18.1 percent for Pecos sandstone. The effective stresg
constant was measured for Indiana limestone because it ig
significantly  different from the value of one reported in

previous works;.7’12 Specimen length was approximately 3.8
in. for Ohio sandstone and 4.5 for Indiana limestone, Pecos
and Berea sandstone. Specimen diameter was 1.985 in.. Bereg
sandstone and Ohio sandstone samples were saturated with
water, Pecos sandstone and Indiana sandstone were used dry
After the specimen was mounted in the pressure cell, ar
appropriate confining pressure and pore pressure were applieg
to the core. The specimen was then made to fail in either
compression or extension by moving the platen of an MTS
machine at a constant loading rate of .l Kpsifsec ir
compression or 02Kpsi/sec in extension. For measurement of
the rock matrix, both the pore pressure and the confining
pressure were increased simultaneously up to an appropriatg
pressure and decreased to zero. After that, the bulk
modulus of the specimen was measured increasing only
the confining pressure,

Profile of the stress-strain curves

Figs. | to 6 show stress-strain data for Berea sandstone
up to maximum strength. For compression tests, two types
of nonlinearity (Figs. 7) were found in the initial and final
portions of the stress-strain curves, separated by straight
portion. The initial nonlinearity is compressive and pertains
only to the direction in which the load is applied. The
directional behavior is large perpendicular to the bedding
planes. On the other hand, the final nonlinearity is not
compressive but the volume of the rock significantly
increases with loading up to failure. Particularly significant
nonlinearity appears in the circumferential strain. The
straight portion between these nonlinearities does not show
much anisotropy, and the slope approaches a constant with
higher confining pressure.

For extension tests, a straight portion appears when|
" the rock specimen is extended after being compressed
hydrostatically. It is followed by a nonlinear portion where
the nonlinearity of the circumferential strain is trivial
compared with the axial strain.

Physically, these experimental phenomena may be
explained as follows. The sandstone generally consists of
solid grains, loose material such as clay, and pore capillaries
surrounded by many flat cracks. If it is compressed, the flat
cracks around pore capillaries start closing. Due to
variation in the ratio of the major and minor axes and in
their direction of the penny shaped cracks, the stress-strain
curve exhibits nonlinearity approaching exponentially to a
constant value until all the flat cracks close. The

displacement of the crack surface is trivial if it is
compressed in the direction of the major axis of the penny
shaped cracks but nontrivial in the direction of the minor
axis. Accordingly, the penny shaped cracks lying in the
direction approximately perpendicular to the loading respond
to the load, which causes large strain parallel to the load but
trivial strain perpendicular to it.

After most of the cracks, whose major axis is perpendi-
cular to the load, are closed, a linear stress-strain relation
appears. For sufficiently high confining pressure, the sicpe
is approximately independent of the confining pressure
because, for this range of stress state, no dislocation occurs
in the rock. In other words, the rock consisting of rock
material and pore capillaries deforms without pore closing
or micro fracture growth.

The final nonlinearity which follows the continuous linear
deformation may be attributed to the growth of micro
cracks during onset of failure. The volume of the rock
increases significantly for small confining pressure. For
large confining pressuce, the volume change is not signifi-
cant and the rock behaves as an ideally plastic material.

Effect of Confining Pressure

The effect of confining pressure on stress-strain is shown
in Figs. | and 2 for confining pressure up to 11 Kpsi. For
Berea sandstone the slopes of the straight portion of T_ vs
€_and O_ vs €g increases up to P_=3Kpsi but becCme
approxima%ely constant for higher conflning pressure. The
same behavior was noted for Ohio sandstone. However, for
Pecos sandstone, the slopes remain approximately constant
for any confining pressure. The Young'sB modulus and
Poisson's ratio approach appr?ximately 3.7x10” Kpsi and o.1%
for Berea sandstone, 2.85x!0” Kpsi and 0.16 for Ohio
sandstone and 2.9x10 Kpsi and 0.14 for Pecos sand-
stone, respectively, with higher confining pressure.

Initial nonlinearity in the stress-strain curves wasg
significant only for P_=0, I and 3 Kpsi for Berea (Figs. 1 and 2
and Ohio sandstones. If the rock specimen is loaded
hydrostatically (Fig.3), the volume of rock is nonlinearly]
reduced due to closing of flat cracks surrounding pore
capillaries. Since more cracks are oriented along the bedding
planes, the strain perpendicular to them is larger than the
parallel case. For Pecos sandstone the stress-strain curvesg
are straight and almost identical for both O_ vs €_ and 0_ vs
€g. This sandstone is quite tight and fewer open Hlat crdcks
may exist around pore capillaries.

Due to the various orientations of the cracks and the
ratios of the major and minor axes of penny shaped cracks,
opening and closing of the cracks depends upon the stress
level. Fig.7 shows the phenomenon schematically. For
compression, the nonlinear strain, g ,duweto crack opening and
closing exponentially approaches a straight line parallel to
AB. For smaller stress levels, the cracks flatter and lying]
closer to the direction perpendicular to the load are closing,
and for larger stress levels, those more circular and lying not
in the direction still remain open and are closing. For
tension, they keep opening until fine cracks start developing
from the edge of the original cracks, In order to treat the
phenomenon quantitatively, logl (a,-_—gii)] vs stress are plotted
for Berea sandstone in Fig. 8, the maximum strain due to flat
crack closing being denoted by 4;(Fig.7). Approximately]
straight lines result for 0_vs€_ ando_ vse_ for both uniaxial

. .z T
compression and hydrostzatlc compression.  The .valuea,.
depends upon orientation of the bedding planes, being
approximately 0.84 and 1.67 parallel and perpendicular to the
bedding planes of Berea sandstone, and 0.61 and 1.89 parallel
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and perpendicular to bedding planes of Ohio sandstone. For
Pecos sandstone, this nonlinearity was not observed.

The remarkable characteristic of the final nonlinearity
is due to significant volume change. For compression tests
the volume change is large for low confining pressure, the
circumferential strain being large. On the other hand for
higher confining pressure, the stress strain curves approach
those for ideal plasticity, the material being incompressible.
For extension tests, the volume increase is not affected by
confining pressure because expansion of fine cracks. is
perpendicular to confining load.

Effect of Pore Pressure

Fig.4 shows an example of the curves of differential
stress vs differential strain for various pore pressures. For
sandstones used in this work, the curves are essentially the
same for P =0 and P_=9Kpsi. Therefore, the effective stress
a;j =g+ Pé‘i’j holds for the stress-strain relation.
Anisotropy

Bedding planes are visible in Berea and Ohio sandstones
but not in Pecos sandstones. The effect of anisotropy on
stress strain curves was not observed for Pecos sandstone, but
was significant for Ohio and Berea sandstones. The aniso-
tropy was particularly pronounced in the initial nonlinearity,
Fig.5 shows clearly the difference between strain parallel and
perpendicular to bedding planes. This anisotropy is also
observed in tension tests (Fig.6). The slopes are less for spec-
imens with bedding planes perpendicular to the extension
load than for those parallel to that load.

In the linear portion of the stress-strain curves, thd
degree of anisotropy is trivial (Fig.5) In the final nonlinearity
anisotropy is present whether bedding planes are parallel of
perpendicular to the axial load; however, due to differences in
rock strength parallel and perpendicular to bedding, thg
nonlinearity starts at lower axial stress in compression tests
and at higher axial stress in tension tests for rock specimeng
with bedding planes parallel to the axial load.

Failure Characteristics

The strength of Berea sandstone is sensitive to confining
pressure (Fig.l), increasing significantly with confining
pressure for compression tests. On the other hand, for Ohid
and Pecos sandstones, the strength does not increase much fof
confining pressure higher than 3 Kpsi. For extension tests
rock strength is close to that for uniaxial tension tests (Tablg
1), but it decreases slightly with confining pressure. This maj
be because, for higher confining pressure, the differentia

between axial stress and radial stress is large, resulting i
yielding of the rock matrix at the edge of microcracksthus
lowering tensile strength. It was, however, not observed
as previous workers have reported,’,l4 that tensile

strength is significantly reduced by confining pressur:e

so that the sample would split under a stress state of
relatively high axial compression.

For compression tests, malleable failure is observed ir
Pecos and Ohio sandstones as confining pressure increases, A
9 Kpsi confining pressure the strain was so large that stress
strain measurements had to be stopped before fissures appeart
ed. For Berea sandstone no malleable failure was observed]
the failure surface being always a single plane. For extensior
tests no malleable failure was observed, the failure surface
being always perpendicular to the axial load.

Table | shows experimental results for rock strength
For compression tests on Berea and Pecos sandstone, thj,:
effective rock strength was smaller with pore pressure tha

without pore pressure. For Ohio sandstone and Indian
Limestone, such difference of strength was not found. Fo
extension test, the effective strength was larger without pore
pressure than with pore pressure, except for Indiana lime-
stone which has large variations in strength. Generally,
tensile strength of rock is so small that the effects of other
factors strengthening the rock are visible. On the other hand,
factors for strengthening rock are masked for compression
tests because of the large variation of rock strength due to
rock heterogeneity. In this experiment, the effective stress
constant n for failure, where8..= o..+1F%,, is close to 1, being
approximately 0.98 for Bereail 0.9 fot Ohio and 0.98 for
Pecos sandstone in tension tests.

Several workers7’14 have reported large effects of pore
pressure in limestones and dolomites, although the permeabil-
ities were sufficiently large to inject water. To test this,
limestone was used. Since the permeability was around .33
md, nitrogen gas was used as the flowing fluid. In the present
experiments, the effect of pore pressure was not observed.
Generally these rocks consist of fine pore capillaries and
buggy pores. The permeability is governed by fluid flow thro-
ugh large capillaries. Hence, even if the permeability is
large, the calculated pore pressure is that of the fluid flow-
ing through these large capillaries but the pressure in the

fine capillaries remains unchanged. From the present exper-
iment and those by previous workers one may conclude that n
in oijzoi
is equal and the value is P. ; (B) the rock does not include
weak materials which behave like.void space.

j+rP6ij is close to 1 if (A) the pressure in all pores

A THEORY FOR STRESS-STRAIN RELATIONS

Total Stress-Strain Behavior for Sandstone

As shown in the previous section, four portions of the
stress-strain behavior with different characteristics were
separately expressed by equations in a tensor form and
combined to form a total stress strain relation. These four,|
modes are: a linear isotropic part, a nonlinear part caused by
pore opening and closing, a plastic part caused by growth of
micro-fractures, and a linear isotropic part for interpore]
materials(Fig.7).

-Any system of the total stress oF acting simultaneously
with a pore pressure P can be divided ihto two parts: Eg.l and]
Eq.2.

o,, =0,, +P§,, (1)
1] 1] 1] .
—Péij“ .o (2)
The strain corresponding to the stress system (Egq.l) is
oo 14— _y - N P
i3 E %43 T EO 1%k *ei3 * €y, (3

where el}lj andepij are the strains caused by the nonlinear
elastic part due to pore opening and closing and the plastia
part caused by growth of micro-fractures, respectively.

The strain corresponding to Eq.2 is characterized by the
elastic coefficients of interpore materials consisting of
interpore matter and nonconnected cracks. Mainly because]
of the opening, closing, and failure of these cracks, the]
interpore materials show nonlinearity. On the other hand,
since nonlinearity caused by the interpore material is trivial,
one may neglect the nonlinear terms, and

1" 1-2v,

i
- P(Sij ..

€4 - (4)

~
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Thus, the total stress-strain relation is

1-2v
= 1+ v = i N P
=5 EGijUkk —-—-—Ei - P(‘Sij-*- eij + €.

o, - (5)

ij ij

e, .
ij
. N P . . .
The details of eij and Eij will be described in the
following sections.

The Stress-Strain Behavior for Nonlinear Part, €§j

Experimental stress-strain measurements showed
that sandstones exhibit significant nonline arity for
small load in both compression and extension: (1)
the amount of nonlinearity is directional, that is,
the strain across the bedding plane is much larger
than along the bedding plane; (2) experiments
also showed that this nonlineavr strain only corres-
ponds to the direction of added stress if the bedd-
ing plane coincides with the load. For example,
the circumferential nonlinear strain is negligible
while the axial nonlinear strain is large for uni-

axial compression test; (3) furthermore,  °
ii

vs stress is close to an exponential function ap-
proaching a constant value as stress becomes large
in the compression side as shown in Fig.7:; (4)
o, .,+PS,.. That is, the

ij ij
effect of pore pressure should be subtracted for
a rock which has few nonconnected cracks.

N —_
Eii depends upon Oij =

The stress-strain relation satisfying all of
the above conditions is complicated. For purposes
of this work, the function [EP{ ] is applied

ij 3
as a first approximation in satisfying the above
conditions. This is sufficient for rock of heter-
ogeneous characteristics.

vs O,
1

(1) Solve the following equation with respect to the
eigen values 0 and the corresponding eigen
vectors,

(o,, -98,04, =0 oo (6
13 lJ) 3 (6)
one obtains the principal stresses E;j and ‘the
direction cosines £,..
1]
(2) The following principal pseudostress is defin-

ed corresponding to Oij.‘

T, = Bcii)

13 {l-e oo (7)

The form of Eq.7 is obtained from the lin-
earity of the curve In[(a,-€.,)/a,] vs effec-
tive stress discussed in étréss—strain behavior
above.
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(3) Then the nonlinear strain is given by the
anisotropic linear relation with respect to
]
Tij.
EN =a, T
ij ~ %im'mj -+ (82)
where T,. =8 & .1'
ij mi nj mn ...(8b)

The coefficient aim is a tensor of order four and

the properties of transformation are followed.
Since rock is generally isotropic along the bedd-
ing plane, the coefficient a,, is simplified as
follows. tJ

— -
311 %12 13
312 211 213 0
[aij] T 1213 %13 233
844
0 a44
2(a11—a12) e (9)
- —
, where a and a are equal to zero since this non-

linear stf¥ain is yielded to the direction of added
stress if the bedding plane coincides with the load.

Stress-Strain Relations for Plastic Par;lreij

Stress—-strain measurements showed that the rocks
exhibit significant nonlinearity before failure occurs|
The characteristics of this nonlinearity are as
follows: (1) volume change is significant. The rocks
always increase in volume in both tension and compres-—
sion before failure occurs; (2) nonlinearity depends
upon the stress level so that one can not apply the
deviatoric stress and strain concept; (3) although
rocks with bedding planes showed significant aniso-
tropy for small load, they did not show anisotropy
after flat cracks in the rocks completely closed; (4)
the nonlinearity, before failure, depends mainly upon
o,, = 0,. +P§, ., that is, the stress added by the pore

ij ij ij
pressure does not significantly affect it; (5) this
nonlinearity is not recoverable and significant hyster-
esis appears for the unloading process.

After testing various existing plasticity theories
it was found that the kinematic hardening theory could
be modified to satisfy the above conditions. An import-
ant hypothesis of the kinematic hardening theory is
that the plastic strain rate is perpendicular to the
yield surface, that is,

P _ —_—
deij Aaflaoij ...(10)




SPE. 9328 Nobuo Morita and XK. E. Gray 5
where the total stress Uij is decomposed into 8;j=0ij The final form of the stress-strain relation is
4+PS.. and ~PS,, and the latter stress is discarded. P S, .da
ij ij de —kl-§l [68 - g's..] (20)
Note that although hydrostatic stress caused by pore ij ij °
P . 2b J
pressure does not significantly contribute to nonlinear 2

strain behavior, that caused by Bij is usually non-

trivial for rocks.

One may write the deviatoric stress as,

S

S, .=
1]

where S, .
13

ij+aij .. (1)

denotes the stress relative to the axis of

symmetry and o,. denotes the displacement of the yield

ij
surface perpendicular to the hydrostat. The totalstress
can be written as the sum of three parts

1
T .. (12
%i5™ 3 Ol gt i3 (12)
representing a component along the hydrostat, the

displacement of the symmetry, and an increment measured
from the symmetry axis, respectively. Since the stress
state during yielding stays upon the yield surface, it
should satisfy

£=0 .. (13)

where in this work the plastic potential was assumed to|
have the special form

£ =10, - g(31) . (14a)
with .. (14b)

T =T

Jz = 385,,5,, .. (l4c)
For the current application of the kinematic hWardening

concept, it is assumed that the displacement of the
yield surface is proportional to the plastic strain
rate, that is,

P

= b(B) (de - %de b1y ..(152)
where :
B = 1m 1m /(30' 'iJ ) . .. (15b)

With this choice of the growth law for aij’ translation

of the yield surface is normal to the hydrostat, since

dockk=0 ..
Substituting Eq.14 into Eq.10 gives

P _. .
de, , ch ] e
E]

(16)

A[es 17

From both Egs.15 and 17, one derives

do i3 = 6bAS.

13 ..(18)

Multiplying E&j on both sides, yields

Sk19%

2bJ2

A = ..(19)

The function b(akk) and g'(aky) should be determined by

the stress-strain curves measured under triaxial loading

Range of Stress-Strain Relations

Two definitions-of failure are frequently used.
One is the point where the rock withstands the maximum
load. The other is the point where a definite disrup-
tion of rock occurs. The former definition is used in
this work for the following reasons. (1) The theory
developed in the previous section requires that the
crack opening and the crack propagation causing the non|
linearity of rock should exist evenly in the rock from
a macroscopic point of view. This condition is normally
satisfied up to maximum loading. (2) It simplifies the
determination of the kinematic translation b if one uses
the stress strain relation in a monotonically increasing
region.

Fig.1l2 shows the strengths of rock under triaxial
loading plotted in 6 3 space. It shows that in the ten-

sile region the strengths are approximately constant.
In compression region, the curve is close to a parabola
for small stresses, while it is close to a straight line
for large stresses. From these experimental data and
also from the analytical equations by Griffith and

Coulombg, an approximate curve may be expressed by

83 = at for extension .(21a)

(01 —62) + (;3 -;1)2 for compression .(21b)
where + (0, —02) =g

g = a,+a, (Ortos+a;) + 53(01+c?z+c;2)2 .. (210)

813. = oy + MRS, ..(21d)

Egs.2la and 21b should be applied if all the stress
components are either in the tension region or compre-
ssion region, respectively. However, if some stress
components are compressive while others are not, the
intersection of these two is often complicated and it
is difficult to judge which conditions are to be app-
lied. In order to avoid these situations a reasonable
condition should be added to the coefficients of §. In
this work g is determined to satisfy the conditions that]
g is a monotonically increasing function and §(30t)>0

where Ut is the rock tensile strength. 1In this situa-

tion the failure point can be determined so that fail-
ure occurs if one or two conditions given by Egs. 2la
and 21b is satisfied. The lines in Fig. 13 are deter-
mined to satisfy the above conditionms.

Data Processing

Experimentally it was possible to measure the
stress-strain relations under confining pressure with-
out losing accuracy. The equations developed in the
previous section are selected so that the triaxial
loading equipment is properly applied to them with
introducing the effective stress-strain concept.
Strictly speaking, polyaxial testing equipment may be
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much more realistic for determining better stress-
strain relations. The authors, however, feel that
polyaxial testing equipment developed so far is not
accurate enough to determine more complicated equa-
tions and parameters, and thus merely increases the
error of stress-strain equations caused by erroneous
data. Since the selected equations 14 and 15 include
one term on Jl and a function JZ’ the intersections

between these equations and planes parallel to the
m-plane are circles. Accordingly, it provides all the
necessary points of stress-strain if one selects load-
ing paths on a certain surface passing through the
axis of the loading surface or failure surface, such
as loading paths obtained by triaxial loading equip-
ment.

Using programmable loading equipment, empirical
data for nonlinear stress-strain were obtained. The
necessary data are axial and radial strains, confining
and axial stresses. The loading paths consist of tri-
axial compression with 3 to 4 confining pressures,
triaxial tension with 1 to 2 confining pressures and
hydrostatic compression with and without pore pressure.
Data are stored on paper tapes. These data in paper
tapes are assembled in a file and the coefficients
involved in the nonlinear stress-strain equation are
determined by appropriate computer programs. Detail
fitting of the nonlinear stress-strain equation to
experimental data is described in Appendix A. These
calculated coefficients are stored in a file to be
accessed by simulators.

Due to limited space, only the results on Berea
sandstone are mentioned in this paper to show the
quality of the constitutive equation. The original
porosity was 0.207 and the permeabilities parallel and
perpendicular to the bedding plane were approximately
320 md and 260 md, respectively. The empirically
measured stress-strain relations are shown in Figs. 1
to 6. These data were numerically processed and ne-—
cessary coefficients in the nonlinear stress-strain
relation were determined. Figs. 9 to 11 show the
theoretical nonlinear stress-strain curves. The re-
coverability of original data is satisfactory and
reflects the characteristics of the original data.
More refinement is necessary for small confining pres-
sure. For small confining pressure, the yielding
mechanism due to internal dislocation is slightly
different from those for higher confining pressure.
Therefore, the yield surface numerically determined
from the empirical stress-strains reflects those for
higher confining pressure.

These theoretical curves show that Biot's linear
stress—-strain relation can be used only for a limited
range of stress state. It can not be extended for
compression stress states with low confining pres-
sure or extension stress states. It also can not be
used for stress states higher than two thirds of the
maximum strength. In these ranges, the pore fluid
pressure causes dislocation of grain contact rather
than the continuous deformation assumed by Biot.

FINITE ELEMENT FORMULATION

The equations of equilibrium are

Gij,j + Fi =0 ..(22)

The strain displacement relations are

.. (23)

The system of Eqs. 5, 13 and 23 give the solution if
the pore pressure and boundary conditions are speci-

fied. Pore pressure can be given by the diffusivity

equation. However, since wall building materials are
usually used during drilling and fracture gradient

tests, it was assumed to be constant.

The system of nonlinear elasticity equations is

reduced to the following formula if one uses the

placement approacﬁ.16

ep.e e e e e
6% = 7% + + +
K FS F€° F o Fp

dis~-

.. (24)

where the stiffness matrix and force terms are given

as follows
(A) Stiffness matrix.
K = J (8] pBav
e
v
In this equation, D and B are elasticity matrix
strain matrix, respectively.
(B) Boundary load

= [ [N] tas
S s

where t is the surface load and [N] is the shape
function.

(C) The body force caused by the pore pressure

F® = | [8]%pefav
where :

P

e = [Hlp

In this equation, [H] is the strain coefficient
caused by the pore pressure.

(D) Force caused by residual strain

F&, = J (8] pelav
£ Ve

(E) Residual stress

Foo = -J [8]1%%av
s Ve

The shape function used in this work was the two

.. (25)

and

.. (26)

.. (27)

matrix

..(28)

.. (29)

dimensional parabolic isoparametric element shown in
Fig. 13. It has eight nodal points in each element and
can be used to fit curved boundaries. All the integra-
tion appearing in Egqs. 25 to 29 were evaluated with

Gauss integration.

There are several nonlinear finite element

techniques.3 These are the jinitial strain method, the

initial stress method and the variable stiffness

method. The initial strain method was applied in this
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work taking into account its stability and minimum
computation time for nonlinear stress strain curves
with both concave and convex parts. Modification is
possible for the initial strain method. The follow-
ing initial strain method gave good results.

Let FS denote the total force except the one due
to the residual strain, that is, that

e e e e
= + .e
F F+ Fp F oo (30)
Now the force F® is devided into M incremental steps.
M
e m
7n£l AF ..(31)

It should be divided along the loading history since
the stress-strain depends upon path for plasticity
problems. Adding the incremental forces using the
following algorithm gives the final stress-strain
after M steps.

[Algorithm]

DO m=1,M
D()l 1,1

J” [B]T[D]{AE?_I}dV

<

K {As } = AF" + AF‘;

= m _ m

= [p] [{B}{asT} -2l ;]
m lAcrZ + Ao
o" =5,

update AEN+A8P

Ae

.5x [As?_1+ (AE:N+AEP)]

.. (32)

In this algorithm, the frontal solution with re-solu-
tion facility is used to minimize computer time.

APPLICATION OF THE MODEL TO FRACTURE INITTIATION DUR-
ING DRILLING

Control of drilling fluid leak-—off and well kicks
during drilling are of great concern to drilling engi-
neers. Drilling fluid loss starts when borehole ptres-
sure exceeds the pore pressure for formations with
fissures and vuggs. If the wellbore has notches or
small fissures, mud loss starts when the wellbore
pressure exceeds the least tectonic stress. On the
other hand, if the wellbore is smooth, a relatively
high pressure is required for breakdown. In this
work, this maximum breakdown pressure was calculated
to aid the interpretation of leak-off tests and
evaluation of fracture gradient.

Assume the formation to be drilled has elastic
properties identical to Berea sandstone (i.e., the
same stress-strain curves given by Figs., 1 to 6 and
a failure surface given by Fig. 12). The overburden
stress gradient is assumed to be 1 psi/ft. The hori-
zontal tectonic stress was estimated from the

average horizontal tectonic stress actually measured2
along the Gulf Coast. Generally, fluid penetration
decreases breakdown pressure because the higher pore
pressure lowers effective rock strength. Since driil-
ing fluids are wall-building, no allowance was made for
breakdown pressure reduction.

Three parameters were varied to study the condition
of vertical fracture initiation. These were depth,
directional horizontal stress and wellbore shape.

Table 2 summarizes the three cases. Case 1 shows the
fracture initiation pressure when depth is varied: 7.7
Kpsi for 5000 ft depth; 12.8Kpsi for 10,000 ft; and
17.8 Kpsi for 15,000 ft. Although these values seem to
be relatively high, they agree with empirical results,
which show high breakdown pressure if the borehole is
sealed. The fracture occurs vertically for these cases
although borehole pressure exceeds the tectonic stress.
This is because the stress state approximates plane
strain due to high stress concentrations around the
borehole and, consequently, the axial stress is still
compressive. It should be noted that the downhole
pressure at which formations with preexisting large
cracks or fissures will accept whole mud is less than
overburden pressure, If fluid penetrates into the
formation, the breakdown pressures were lower by
numerical simulation model and laboratory experimental
tests, i.e., the breakdown pressures calculated by
nonlinear simulation models are 5.71 Kpsi, 9.95 Kpsi
and 14.2 Kpsi for 5,000, 10,000 and 15,000 ft, respec-
tively, with data given in Table 2 (A,B,C); rock
permeability = 320 md; rock porosity = .207; injection
fluid compressibility = .155 psi’l; its viscosity =
lecp; and well pressure increasing rate = 1 Kpsi/sec.
Also shown are breakdown pressures for linearly
elastic material. These results show relatively low
breakdown pressure compared with those for nonlinear
material; stress concentration is lower for nonlinear
material due to relaxation of stresses.

Case 2 is for a slightly higher tectonic stress in
one direction. The breakdown pressure is 11.2 kpsi, as
compared to 12.8 kpsi for equal horizontal stresses.
This results because of tensile stress concentration
around the borehole due to the direction of applied
loads. An inclined borehole may have the same tendency
since the tectonic stress perpendicular to it is direc-
tional, although the two stress states would not be
identical.

Case 3 is for an elliptic borehole. Actually, a
wellbore is rarely circular. Caliper logs often show
that the long axis of the elliptic hole is more than
1.5 times larger than the shorter axis. In this case
also, the breakdown pressure is lowered.

In the above examples, maximum breakdown pressures
are calculated for different parameters. Actual break—
down pressure, however, lies between the following
bounds.

Min(|og|,{o, )< P <P ..(33)

actual b

The left hand term is used for designing maximum
permissible drilling fluid density. The right hand
term is for a wellbore with smooth surface or a surface
completely healed by mud cake. During a leak~off test,
only a short part of the wellbore is uncased, hence,
the probability that fissures or notches exist in this
part is small. 1In this case the actual fracture initi-
ation pressure is close to Py. It does not, however,
mean that all formations below the casing shoe will
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hold P,. It does show that no more than this density
mud should be used.

CONCLUSIONS

1.

A constitutive equation has been developed which
closely fits the nonlinear stress-strain relation of
sandstones. TFour different phases appear in the
stress-strain curves: an initial nonlinear portion, a
linear portion, a final nonlinear portion, and the
volume change of the rock matrix by pore fluid pres-
sure. The nonlinear strain consists of the sum of
these four parts.

Precise measurement of the effective stress comstant
for failure was possible using extension tests,
which was not the case for conventional compression
techniques owing to rock heterogeneity.

Coefficients of the constitutive equation could be
determined with reasonable accuracy by simultaneous-
ly fitting stress-strain curves for several loading
histories in a least square sense. Generally,
stress-strain curves are needed for compression
tests with 3 to 4 confining pressures, for tension
tests with 1 to 2 confining pressures, for hydro-
static compression tests, and for hydrostatic com-
pression with pore pressure equal to confining
pressure.

A nonlinear stress-strain relation closely fitted to
actual rock properties was applied to a finite ele-
ment model. Its application was feasible although
smaller load increments were necessary when the
stress state approached rock failure surface.

Actual borehole breakdown pressure lies between
lower and upper bounds. The lower bound is equal to
the smaller value of horizontal or overburden
tectonic stress. The upper bound is the breakdown
pressure for a smooth wellbore surface. Thus a
proper breakdown pressure should be used for pre-
venting or interpreting wellbore problems.
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NENCIATURE linear parts of strain tensors, respectively.
A}
a, maximum strain due to the flat crack closing eij itrginlcorresponding to the stress system given
1 y Eq.
"
aii coefficient tensor for .nonlinear stress strain eij strain corresponding to the stress given by Eq.2
a, coefficients of the polynomial E' 8 displacement matrix
b function for do.. vs deP 6 displacement matrix for each element
ij i
J 3 Gi. Kronecker delta
B strain displacement coefficient matrix J
D stress strain coefficient matrix A constant
d increment of a variable K 6bA
E,E. Young's moduli of the rock and interpore material, ) )
1 respectively Y constant{0<y<1)
£ loading surface n effective stress constant for failure
. ' .
F external force v,vm rock and interpore Poisson's ratio
e e _e. e a stress
Fo» p’ Feo, F;0 equivalent nodal forces for
R R . . stress tensor
distributed load, pore pressure, residual strain |, 1j
and initial stress, respectively o° residual stress
e . —
F total equivalent nodal force Gij effective stress for stress-strain relation
g function for loading surface ~
— X a,. effective stress for failure
g function for rock strength 1]
H stress strain coefficient matrix for interpore ij effective stress in principal direction
material —
—_ _ o eigen value
T %
3 53 ¢ tensile rock strength
2 e k27kL
K,K~ stiffness matrix for assembled elements and Oy 9y horizontal and vertical tectonic stresses,
each element, respectively respectively
lj, directional cosines Tij pseudostress tensor
M number of curves ij principal pseudostress
[n] shape function
. R A difference between two values
P fluid pressure
Pc confining pressure Subscript
Po pore pressure i,] indices for tensor components

Pactual’ b

S..
1]

13

m W™ ™

(9]

b

ij

e, &N

P breakdown pressures for actual and
maximum values, respectively

area

deviatric stress tensor

v

deviatric stress tensor from the axis of the
loading surface

surface load

displacements

volume
volume of each element

distance between the axis of the loading surface
and the hydrostat

constant
variable defined by Eq.15

strain

L
i5° €157 €ij total, plastic, nonlinear and

r, & space coordinates in radial coordinates

X,2  space coordinates in Cartesian coordinates

Superscript

T transpose of a matrix i
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APPENDIX A

FITTING OF THE NONLINEAR EQUATION TO EXPERIMENTAL
DATA

Determination of the linear elastic constants

In Eq.5, all the terms except (l—Zvi)/Ei(PSi? are
functions of E&j' Hence, if the confining stress and

the axial stress are equal to the pore pressure, all
the terms vanish except the matrix compression term.
Since the bulk modulus of the interpore material is

very small, the strain should be measured exactly at
balanced pore pressure and confining stress.

Young's modulus and Poisson's ratio should be
determined so that the stress-strain relation satis—
fies the workhardening conditions. From these condi-
tions one derives

— - L
d
Oij deij > doij deij

In addition to this condition, there should exist at
least one point which satisfies.

— P
dcijd%j =0

(a-1)

(A-2)

Young's modulus and Poisson's ratio defined above can
be calculated from axial and circumferential strain
increments and axial and circumferential stress incre-
ments at the interval where AgijAEij is maximum.

Actually the measured strain components include the
initial and the final portions of nonlinearity , In
order to minimize these strains, the linear constants
should be evaluated at confining pressure sufficiently
high to close flat cracks and at low differential

axial stress before significant yielding appears.

Determination of the coefficients in the initial

. N
nonlinear part, Eij

Eq.8 includes four components for a and one

constant B. Since this nonlinear term occurs in the
direction of loading, one simple method is to use hy-
drostatic loading. Usually 41158595 since most rocks

are isotropic along the bedding plane. In this case,
the specimen with bedding plane perpendicular to the
axial load, is loaded hydrostatically, and axial and
radial strains are measured until the confining load
is high enough that the straight portion appears(Fig.
7). The intersection of the straight portion with the
strﬁin coordinate gives a1y, apy, and a33. If log
[(eﬁ+ai) /ai] vs 0, is plotted like Fig.8, the

slope gives the value B. The value a4 can be deter-

mined by a torsion test, but since it is not necessary
for plane strain or plane stress problems, it was not
measured in this work.

Determination of the functions in the final nonlinear

P
part, €.

There are several methods to determine these
functions. Selection of a proper method determines
whether one gets successful results or not. The most
important thing to take into account is that the rock
is extremely heterogeneous so that the deviation of
measured data often exceeds decades of percent, which
normal numerical techniques rarely encounter. The
methods mentioned in this section are carefully select-
ed so that the resultant stress-strain relation repre-
sents the average characteristics of rock samples from
a massive rock.

The loading function f which appears in the kine-
matic hardening theory is similar to the yield sur-
face, and can be determined by yield points. However,
for rocks, the final nonlinearity gradually occurs and
the yield points are not well defined. In this work,
the loading surface is determined so that it passes
through points which have specified amounts of non-
linear strain. That is, that

M
PP _Y
_MZ

€,.€,.
113 m=1

f =0 for Max[s:i (A-3)

P () 2 (o)
J 1]
The proper value Y may be around 0.02 which is often

used to define the yield surface. A polynomial of
order 2 was sufficient for the function g in f.

The kinematic hardening function b(B) in Eq.15
is determined from Eqs.1l4, 16 and 18. These three
equations give

. 1 1
asny - @57 = 4 '2 (A-4a)
ij 13 b
1 1 n-kl
65 nt+ 54s n+7 = dg. 2 (A-4b)
REERE S R
1 n+3 -
Wz = «§,, 2 (A-4e)
ij ij
where
k = 6b(BIA (A-44d)

n+Y% denotes the value to be evaluated at the center
of n-th interval. Eliminating dq2j1 and sgjf gives
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+l +i 1 n+1 n+l
et (25" T2 + Fhe" 2 k+ag" " 2 (A-5)
1 1
-3(25® +as™tDas® 2] - 0
ij ij ij
Since all the values except K can be evaluated for n-th
interval if stress strain curves are given, K can be
evaluated at nts-th point by solving the’ above equations.
From Eqs.A-4a and A-4c, one derives
1 1 .
n++ 1 r5sn n : -
5. 2 < 7eel2S gy +ds.f§] (4-6)
ij ij
Using this equation, the deviatoric strain Egj can be

evaluated for n+s-th point. Finally, substituting Eq.15
into Eq.18 gives

1 1 1 1
b(® 7 = K(gn-*?)/(3§:.+_2_ ds::;.f) (a-7)
J

Thus the function b is evaluated at n#s th point if
stress strain curves are given. Using a polynomial of

small degree, b(B) is expressed by B at all data points
in a least square sense.

TABLE 1- EFFECTIVE ROCK STRENGTH

DATA Bedding Plane : Horizontal for Berea and Ohio

Vertical for Pecos and Indiana Limestone
Pore Fluid : Water for Berea and Ohio :
Nitrogen Gas for Pecos and Indiana Limestone

Rock Name Pc'Po Po 0ax+Po Rock Name Pc'Po Po cax+Po
(Kpsi) (Kpsi) (Kpsi) (Kpsi) (Kpsi) (Kpsi)
Extension Tests Compression Tests
Berea 15 0. 0. .14 Berea 1 0. 0. -9.02
16 0. 0. 14 2 0. 0. -9.08
17 0. 0. .13 33 0. 9.02 -8.63
18 0. 0. .15
34 0. 7.01 .30
Ohio 9 0. 0. .20 Ohio 1 0. 0. ~-6.27
10 0. 0. .13 2 0. 0. -5.41
11 0. 0. .15 3 0. 0. -6.22
25 0. 6.95 .29 24 0. 9.03 -6.17
26 0. 7.02 .52
Pecos 8 0. 0. .57 Pecos 1 0. 0. -7.59
9 0. 0. .61 2 0. 0. . =7.42
17 0. 6.98 .69 16 0. 9.02 -6.81
10 -1.02 0. .17
18 -1.03 5.9 .61
11 -3.01 O. .11
19 -3.04 3.98 .20
12 -5.00 oO. .07
20 -5.03 1.99 .30
Indiana Limestone Indiana Limestone .
5 0. 0. 1.50 1 0. 0. -10.13
6 .0. 0. 1.06 2 0. 0. -14.88
7 0. 0. .93 3 0. 9.02 -14.42
8 0. 0. 1.30 4 0. 9.04 -13.82
9 0. 6.99 1.12
10 0. 7.02 1.01




TABLE 2- MAXIMUM BREAKDOWN PRESSURE FOR VERTICAL FRACTURE

DATA

(A) Stress-Strain Curves(Figs. 1 to 6)

(B) Failure Condition (Fig.12)
Tensile Strength Across the Bedding Plane = .2Kpsi

(C) Overburden Pressure = 1psi/ft
Horizontal tectonic stress is estimated from the 2
fracture tests in the central and southern area in U.S.A.
Pore Pressure Gradient = .435psi/ft

CASE 1 Effect of Depth

Tec. Stress Pore Press. Max. Breakdown P

Depth o, [ (Kpsi) Nonlinear Linear
(fe) v H (Kpsi)
{Kpsi)
5,000 5. 3.95 1 2.175 7.7 5.93
10,000 10. 7.37 4.35 12.8 10.59
15,000 15. 10.78 6.525 17.8 15.24
CASE 2 Effect of Directional Tectonic Force
Tec. Stress Pore Press. Max. Breakdown P
(Kpsi) {Kpsi) Nonlinear Linear
oy, %1 %2 (Kpsi)
10. 7.37 8.48  4.35 11.2 9.48

CASE 3 Effect of Elliptic Hole(3/b=2/3)

Depth Tec. Stress Pore Press. Max. Breakdown P

(ft) gy %y (Kpsi) Nonh‘near.' Linear
(Kpsi) (kpsi)
10,000 10.  7.39 4.35 10.35 8.98
<
° A A
ConrInING PRESSURE
A A: 0 xest
T B: 1 B 8
c: 3
ze D: S
= “H E: 7
;u
;o ¢ ¢
4
S e
2 1
g \
£ e
= %;N D D
. AN /
9 €€y €7G
i E
o
[N
DiFFERENTIAL STRAIN (€ ~€p)
° [CHERETYTYS ¢
X,

X 19 b3 Y g T
s.8 4.0 ~9.8 -2,8 1.9 L A ) 1.

Fig. 2 - Experiwental Stress-Strain Curves for
Extension Tests (Berea Sandstone; P _=0;
Horizontal Bedding Plane). °

*

Ax1AL AND CONFINING STRESSES( xPS1)

~23.¢ -%0.0 -9%.9 ~49.0
1 1 1 .
2]
m
m

-2e,0
s

<y
CONFINING PRESSURE

-15.¢
I

DIFFERENTIAL STRESS ( Z*Pc) {kpst)

hd A0 kst
o
b B:1
AC:3
° D:5
"I\'- E:7
F:9
. f 6:1

13
.9 59 1.9 15.9 [ ]
STRAIN{MILLL IN/IN)

Fig. 1 - Experimental Stress-Strain Curves for
Compression Tests (Berea Sandstone; P°=0;
Horizontal Bedding Plane).

i

. d -7.0

L-e

L.

-5.9

-4.8

-9.49

. STRAIN(MILLY IN/IN)
] « t A i i
%0 .80 1,20 1,89 2.49 2. 04 3.80

Fig. 3 - Experimental Stress-Strain Curves for
Hydrostatic Loading (Berea Sandstone; Horizontal
Bedding Plane).



L L4
o H
v '
(] CH
n ®
- ks
- ™
] "
o
® | Po=0 Po=0 2 C,
=7 »
b
<
Tm Po=Pc=SKkps1 °
n.u o« S.‘
+ 7 r
~ —~
g > J
" N,
g o Po=P=oK by
- o L3
& @ CoNFINING PRESSURE
2 = AND Bepping Puane
2 e
g :"‘ = 'é" Az Pomo kst
=
g i é ' B : P=5 kes1
2 w
- te C ¢ Pe=9 kpst
1] = h: Honxzou‘r L
? h EDDING PLANE
V : VerTicaL
BEDDING PLANE
o - A
- »
' "
DIFFERENTIAL STRAIN
. ( €-€, JMILLT IN/IN) ° STRAINCHILLL IN/IN)
Y L3 Ly LY T > LY { T T T =
“Ee  -u.8  -2.0 6.0 2.0 4.0 6.9 “ie.8  -s.e 0.0 5.0 1.e 150 2a.0

Fig. 4 - Experimental Stress-Strain Curves with

and without Pore Pressure (Berea Sandstone;
Horizontal Bedding Plane).

Fig. 5 - Experimental Stress-Strain Curves for
Specimen with Horizontal and Vertical Bedding

Plane (Compression; Berea Sandstone; P°=O).

o
-
* Aoty
‘ ]
- CoNFINING PRESSURE ™~ : e’ K
= Anp Beppine PLane P 7%
] 1 R 4
- A Pe= 0 kest ' )
£ B : P.= 3 xpsi ' ’
=3 b '. ’
PR C: Pc' 7 xps1 \ B
wt 1 ’
< Hl : HorrzonTaL Beoping ‘ ’
y PLaNE 1 /)
2% V 1 YeRTicAL B .
277 " BEDDING PLANE B, y
& ¥ y
)
Se
£
@ b
w -
&
&
a
ky
-
13
*
.
o A
[ / " N
€€, /€
< § ———
L]
o EN /0 4
1 <, K 7
? /
. DIPFERENTIAL STRAIN (E-GPC) /
%) (arecy iv/ind K N
‘f C \] A S { 1y !
-5.8 -4, 4 5.9 -2.0 1.9 .9 1.9 /

BI

Fig. 7 - Schematic Diagram for Initial and
Final Portions of Nonlinearity.

Fig. 6 - Experimental Stress-Strain Curves for
Specimen with Horizontal and Vertical Bedding
Plane (Extension; Berea Sandstone; P°=0).




[(al- €)/ 01] (LoGARISMIC)

LN ]

° &
fo) o; vs ez ForR Un1ax1aL CoMPRESSION TesTs v ~C,
i
o O vs €, ror HybrosTATic ComPRESSION TESTS -
ave
1, 4 A O vs €, ror UniaxiaL Compressior TesTs e
~~
x Tpvs €, 7oRr llyprosTATIC COMPRESSION TESTS 2
5. -3,
5 2 &
w2 % Bv\
o PoRE PRESSRE=0KPSE
< 9
£ 24 CoNFINING PRESSURE
I g’ A PO kpss
o
Se B : P."5 xpst
L . C : Pe=likpst
° I BepbinG PLANE
o ° Aghy A H : HoRIZONTAL
& o EDDING PLANE
1 x ¥ i = v M V 1 VERTICAL
0 5 1 1.5 5 BEDDING PLANE
] 2% °
STRESS (KPST) D A /
. STRAIN(MILLI IN/IN)
T v Lo T T
e -S.5 0.0 s.0 1.0 15,0 20.3

Fig. 8 - Initial Nonlinear Stress-Strain

(Berea) .
Fig. 9 - Theoretical Stress-Strain Curves
- for Compression Loading (Berea Sandstone;
Horizontal and Vertical Bedding Planes;
=0
P ~C).
s L3
s — &
Ay /
< K o
< ~
a -
>, Pore Pressure = Okest a”
B¥ %] Cowrrning Pressure e — e pep
P A Po0 kest %Y e —€. P50 [Te; 0
g ¢ 4 € PPy e e
& B : Pc=3 xest & rreroe
“ e - 3
gq‘;_‘ C:P=7xest p_ 3’;"
E 3 E:
2 Beoping Puane 2
e ® re
zZ s H: gomzom L z %
5 + EDDING FLANE s T
e V 1 YERTICAL &
H BeopinG PLanE £
e ° |
- i
* °]
3 «
d *
1 CH Cv -
s DIFFERENTIAL STRAINCE - €, Y (MILLL IN/IN) - ° STRAINCMILLT IN/1N)
0 T T S T s T T 3 T T
-5, 9 4.9 -3.0 2.0 -1 we 1.9 (1] 9.60 .20 1.88 2,40 % 90 3, 89
Fig, 10 - Theoretical Stress-Strain Curves Fig. 11 - Theoretical Stress-Strain Curves
for Extension Loading (Berea Sandstone; for Hydrostatic Loading (Berea Sandstone:
Horizontal and Vertical Bedding Planes; Horizontal Bedding Plane).
P_=0)

[+)



ettt i g et
. V.

Ax1at. Stress(kpsi)

. < 42
G =2y + A + A3

WAERE A; = 6.9563

i, = ~19.7533
0. 1 Ry = 3372
-40,
~30.
-20.
-10.|¢

0. -5,
CONFINING PRESSURE(KPSI)

Fig. 12 - Failtvre Envelope for Berea Sandstone.

W2
et i !

-
1>

%
B ad
[y
11
-oe T e

Pw‘?l
R Be & [ 2

Fig. 13 - Finite Element Idealization Around a
Borehole Using the Parabolic Isoparametric
Element.



